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Abstract: The design of an antenna requires a careful selection of its param-
eters to retain the desired performance. However, this task is time-consuming
when the traditional approaches are employed, which represents a significant
challenge. On the other hand, machine learning presents an effective solution
to this challenge through a set of regression models that can robustly assist
antenna designers to find out the best set of design parameters to achieve
the intended performance. In this paper, we propose a novel approach for
accurately predicting the bandwidth of metamaterial antenna. The proposed
approach is based on employing the recently emerged guided whale opti-
mization algorithm using adaptive particle swarm optimization to optimize
the parameters of the long-short-term memory (LSTM) deep network. This
optimized network is used to retrieve the metamaterial bandwidth given a set
of features. In addition, the superiority of the proposed approach is examined
in terms of a comparison with the traditional multilayer perceptron (ML), K-
nearest neighbors (K-NN), and the basic LSTM in terms of several evaluation
criteria such as root mean square error (RMSE), mean absolute error (MAE),
and mean bias error (MBE). Experimental results show that the proposed
approach could achieve RMSE of (0.003018), MAE of (0.001871), and MBE
of (0.000205). These values are better than those of the other competing
models.

Keywords: Metamaterial antenna; long short term memory (LSTM); guided
whale optimization algorithm (Guided WOA); adaptive dynamic particle
swarm algorithm (AD-PSO)

http://dx.doi.org/10.32604/cmc.2022.028550
mailto:AAAlHussan@pnu.edu.sa


866 CMC, 2022, vol.73, no.1

1 Introduction

Machine learning is an active research field that is widely used in data analysis for numerous
domains. On the other hand, the design of antennas becomes complex every day; which encourages
antenna designers to benefit from the powerful capabilities of machine learning to build reliable models
to be used for intelligent and fast optimization of antenna designs. Optimization techniques based on
machine learning algorithms; such as particle swarm optimization and genetic algorithms are used
recently to optimize the structure of antennas while retaining their significant target performance.
These optimization techniques are essential especially when the structure of the antenna is complex.
In this case, the machine learning algorithms are effective in discovering the best antenna design
parameters. In addition, the tools used in the simulation and analysis of electromagnetic (EM), which
can be used to measure the fitness of antennas, require a lot of effort and time by antenna designers
to get the proper results from the optimization process performed by these tools. The solution to
this bottleneck is offered by machine learning that can be used to overcome the limitations of these
simulation tools. The advantage of machine learning is embedded in its ability to provide approximate
and proper antenna structures without the need to use EM simulations [1,2].

Machine learning techniques; such as K-nearest neighbors (KNN), artificial neural network
(ANN), and least absolute shrinkage and selection operator (LASSO) were used recently in integrated
and unified frameworks to optimize the parameters of antennas and to discover their optimal design
parameters [3]. One of the key benefits of machine learning is the reduction of the computation time
observed in EM approaches. This benefit is obvious when optimizing several parameters or when
it is needed to build a large model structure. The geometries of microstrip antennas, particularly
complicated geometrical antennas, or the new model structures are still challenging to be handled
efficiently using the established theories of antennas. This can be shown when given some of these
geometries have low accuracy. In real-time, machine learning may be used to model and forecast
scattering problems as well as evaluate and improve antennas performance. In the literature, many
research efforts employed machine learning models for optimizing the parameters of antennas. The
most commonly used model to perform this optimization is the neural network. However, the antenna
structure determines the number of geometrical parameters needed in the optimization process, and
as this number increases, it becomes hard for the model to derive a better relationship among these
parameters [4].

Many antennas are designed with variable performance and usage. The rectangular antenna is
considered the simplest design that can be simply designed based on machine learning. The relevant
parameters are the length and width of the rectangular patch, the dielectric, the height of the substrate,
and the resonant frequency. A circular patch antenna is another essential type of antenna. The
parameters of this design are similar to the rectangular patch antenna but with a radius of the patch
antenna instead of the length and width of the rectangular type. An elliptical patch antenna is a
special design of a circular antenna, where the shape is an ellipse. Similar parameters to the circular
antenna are specified to be optimized using machine learning. In addition, in a fractal antenna, the
perimeter (outer structure or inner sections of antenna) can be increased, and the effective length can
be maximized based on the self-similar design structures/fractals of the material that can transmit or
receive electromagnetic radiation within a given volume or a total surface area. This type of antenna
consists of several parameters to be optimized, requiring a suitable dataset with enough samples to
predict some of these parameters efficiently. Another type of microstrip antenna is the monopole
antenna. The class of monopole antennas consists of a conductor in the form of a straight rod shape.
In addition, there is a type of conductive surface, namely, a ground plane used to hold the conductor
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perpendicularly. When this antenna works as a receiver, the output signal is taken between the ground
plane and the lower end of the monopole. Moreover, to the lower end of the monopole, one side
of a feedline is attached to the ground plane, and the other side is attached to the antenna. There
are other types of microstrip antennas that are designed with particular configurations. These types
include substrate integrated waveguide, planar inverted-F antenna, reflect-array, and other special
patch designs. Each type of these design has a set of configuration parameters that can be optimized
and adjusted using machine learning [5].

One of the main outcomes of the field of computational electromagnetics is known as metamate-
rial antenna. This type of antenna has a significant advantage which is the possibility of designing this
type of antenna using computations and optimization methods without relying on the modeling of its
broader type [6]. The field of study of metamaterial antenna is based on customizing the light molecule
interactions using complex geometric shapes. However, the other types of conventional antennas use
Maxwell’s equations in their inherent design. Therefore, the metamaterial antenna is the best antenna
that can benefit from the current advances in machine learning. The material of metamaterial antenna
has special properties; which can not be regenerated using the natural material. This type of material
is used in many other fields; such as microwave components, revolutionary electronics, and compact
antennas. The design of antennas is considered the most important application of this material [7].

Recently, many optimization approaches have emerged in the literature with promising perfor-
mance [8–11]. These methods are necessary for the tasks where the optimization process grows with
time and is thus complex. When the conventional techniques cannot solve complex problems, the
metaheuristic approaches are the best choice to handle these cases. The metaheuristic approaches are
based on the idea of starting with a random population then selecting the best candidate solution to
be passed to the next generation. This dynamic nature of metaheuristic algorithms makes it a proper
choice for optimizing the parameters of metamaterial antenna.

Tab. 1 presents some of the key achievements in the literature in which machine learning
approaches are employed for optimizing the parameters of antennas. As shown in the table, it can
be noted that the most common method used for parameter optimization is neural networks in the
form of MLP or SVR that can be harnessed with other approaches in ensembles. In addition, most
of the parameters targeted by the parameter optimization are the resonance frequency given the
geometrical information of the antenna as an input. Moreover, the table shows the achieved results of
each approach in optimizing the target parameters.

Table 1: Recent approaches for optimizing the parameters of antennas

Paper Approach Input Output Results

[12] RBF + MLP,
resilient
backpropagation

Length and width, and
substrate’s dielectric
constant r and thickness

Resonant frequency Error = 3.5 × 10–14

[13] SVR + kernel
configurations

Height and width Resonant frequency Error = 3 dB

[14] Gaussian kernel
+ SVR

Length and width Voltage standing wave ratio
(VSWR), gain, and
resonant frequency

NA

(Continued)
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Table 1: Continued
Paper Approach Input Output Results

[15] SVR Height and length Input impedance Rn,
bandwidth (BW), and
resonant frequency RF.

Error are 1.21%
for RF, 2.15% for
BW, and 0.2% for
Rn

[16] RBF Permittivity, height, and
resonance frequency

Width and length of the
patch

Error = 0.91%

[17] MLP Permittivity, height and
resonance frequency

Width and length of the
patch

Error = 3.47%

Metaheuristic algorithms are capable of handling problems with unexpected behavior. These
algorithms are distinguished by their intelligence which is based on the random search methodology. In
addition, these algorithms can efficiently avoid local perfections as usually referred to as simple and
flexible approaches. This type of algorithm has two main processes namely exploitation and explo-
ration that are running while searching the population for the optimal solution. In the exploration
process, the search space is examined thoroughly to find the best solution. In recent decades, many
global optimization approaches were developed based on observing natural objects in the real life.
One of these global optimization approaches is known as population-based metaheuristic algorithms
that can be used in a variety of situations. Two types of metaheuristic approaches are widely spread in
the field namely metaphor and non-metaphor base approaches. The metaphor approach is based on
observing human behavior or a natural phenomenon in its inherent details [18].

In this paper, we propose a novel approach for predicting the bandwidth of the metamaterial
antenna based on optimized long short-term memory (LSTM). The optimization of LSTM is
performed in terms of the recently emerged algorithm referred to as adaptive dynamic particle
swarm algorithm (AD-PSO) with a guided whale optimization algorithm (Guided WOA) [19,20]. The
resulting optimized LSTM with optimum hyperparameters are used to robustly predict the bandwidth
of the metamaterial antenna.

The rest of this paper is organized as follows. The description of the dataset along with a
detailed discussion of the proposed methodology are explained in Section 2. The achieved results are
comparisons are presented and investigated in Section 3. Then, the conclusions are examined in Section
4.

2 The Proposed Methodology

The proposed methodology used to improve the prediction of the metamaterial antenna band-
width is discussed in this section. The section starts with presenting the dataset employed in this
research, followed by discussing the main components of the proposed approach.

2.1 Data Preprocessing

The metamaterial dataset used in this work contains eleven features, which are described in Tab. 2.
Using Kaggle [21], we were able to access the dataset. There are 572 records in this collection, which
is rather large. Each record in the dataset represents the optimum design of a metamaterial antenna.
The columns of this dataset represent the features that describe the configurations of the antenna. The
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bandwidth of the antenna is adopted as the target feature that we need to robustly predict given the
other features. A short description of these features is presented in Tab. 2. To get a better understanding
of these features, Fig. 1 shows the distribution of the bandwidth from the dataset records. As shown in
the figure, the majority of samples in the dataset have a bandwidth in the range from 0.9 to 1.0. This
means that the changes in the bandwidth among the samples are very small; which requires a robust
predictor to predict the bandwidth value of a given set of parameters accurately.

Table 2: Description of the metamaterial dataset features

No. Feature Description

1 S11 Return loss
2 Bandwidth The bandwidth of the antenna
3 VSWR Standing wave ration voltage of the antenna
4 Gain Antenna Gain
5 Ya Split ring resonator cell distance
6 Xa Array-patch antenna distance
7 SRR_num Number of cells in the split ring resonator
8 Tm Rings’ width
9 Dm Rings’ distance
10 W0 m Rings’ gap
11 Wm Dimensions of the split ring resonator

Figure 1: Distribution of bandwidth feature in the metamaterial dataset
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As the dataset is collected from electromagnetic simulation tools, it has been noted that some
samples were recorded in the dataset with missing values. To deal with the missing values (denoted
by null in the dataset) in a certain feature column, we replaced these values with the average of the
surrounding not-null values in the same column. In addition, it is noted that the values of the features
in the dataset do not lay in the same range; which might affect the performance of the predictor.
Therefore, we applied the min-max normalization. After applying this step, each feature in the dataset
has the lowest value of zero and the greatest value of one. Fig. 2 depicts the correlation matrix of the
features of the dataset after dealing with the null values and normalizing the feature. As shown in the
figure, the values of Tm and Wm are highly correlated with the metamaterial antenna bandwidth.

Figure 2: Correlation matric of features in the metamaterial antenna dataset

As explained in [22], the LSTM model is an improvement on the ANN model and may be used to
solve a variety of issues. Long-term memory retention is one of LSTM’s key advantages. Fig. 3 depicts
the LSTM design. In the LSTM model, the initial step is to determine which data from the cell state
should be disregarded.
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Figure 3: LSTM neural network architecture

2.2 Adaptive Dynamic Technique

After the optimization process has been initialized, and for each solution in the population, a
fitness value is calculated. To get the highest possible fitness value, the optimization algorithm selects
the optimum agent for the situation (solution) [23]. To initiate the adaptive dynamic process, the
optimization algorithm divides the population of agents into two groups, which are referred to as the
exploitation group and the exploration group. Folks in the exploitation group are mostly concerned
with moving toward the ideal or best answer, while individuals in the exploration group are primarily
concerned with searching the region surrounding the leaders. The exchange of information (update)
between the agents of the various population groupings occurs dynamically. The optimization method
is started with a (50/50) population to establish a balance between the exploitation group and the
exploration group. The process is then iterated over and over again until it finds the best or optimum
solution [24].

The Guided WOA refers to a modified version of the original WOA algorithm [25], which is used in
this research. By changing the search strategy via a single agent, the guideline-based WOA overcomes
one of the disadvantages of the original WOA. Using a modified algorithm, the agents are directed
toward prey or the optimal solution depending on the input from more than one agent. In the original
WOA algorithm, agents are forced to roam randomly around each other to get the results of the global
search. Agents are forced to follow three random agents instead of just one when they are using the
Guided WOA algorithm, which results in a more efficient exploration process. More exploration may
be obtained by requiring agents not to be impacted by a single leader position. The updating positions
mechanism of the algorithm three random solutions of Xo1, Xo2 and Xo3. These solutions are updated
every iteration to enhance the algorithm performance and get the optimal solution.

X (t + 1) = w1 ∗ Xo1 + w2 ∗ z ∗ (Xo2 − Xo3) + w3 ∗ (1 − z) ∗ (Q − X (t)) (1)

A variety of swarming patterns in nature, such as those shown by birds, are represented by the
PSO algorithm, which replicates their social behavior. By shifting their places, the agents in the PSO
algorithm look for the optimal solution or meal based on the most recent velocity. The following
algorithm shows the detailed steps of the AD-PSO-Guided WOA algorithm employed in this research.
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3 Results

A set of experiments were conducted to evaluate the proposed model and compare it with the other
competing models in the literature. These models are the Multilayer Perceptron (MLP), K-Nearest
Neighbors (KNN), LSTM, in addition to the proposed AD-PSO-Guided WOA for the LSTM model
which is used to select the optimal hyperparameters value of the LSTM network for predicting the
bandwidth of metamaterial antenna. The evaluation of these models is based on the criteria listed in
Tab. 3. These metrics are the mean absolute percentage error (MAPE), the root mean square error
(RMSE), the relative root mean square error (RRMSE), and Pearson’s correlation coefficient (R). In
addition, the modified agreement index (d) was employed to determine agreement (WI), where M is
the number of observations in the subset; Ŷm and Ym are the mth estimated and observed PV power
values, and Ŷm and Ym are the arithmetic means of the estimated and observed values.

Table 3: Performance evaluation metrics

Metric Value

MAPE 1
M

M∑
m=1

∣∣∣∣ Ŷm − Ym

Ym

∣∣∣∣ × 100

RMSE

√
1

M

M∑
m=1

[
Ŷm − Ym

]2

RRMSE
RMSE

Ym

× 100

R

∑M

m=1

(
Ŷm − Ŷm

) (
Ym − Ym

)
√[∑M

m=1

(
Ŷm − Ŷm

)2
] [∑M

m=1

(
Ym − Ym

)2
]

WI 1 −
∑M

m=1

∣∣Ŷm − Ym

∣∣∑M

m=1

∣∣∣Ym − Ym |+| Ŷm − Ŷm

∣∣∣ , 0 < d ≤ 1

It was necessary to utilize around 80 percent of the dataset obtained at each site for training,
with the remaining 20 percent being used to test for the dependability of the models that had been
constructed. A uniform distribution was used to provide random sampling and assignment of data
to the two subgroups, rather than using a chronological partitioning method. This is done to lessen
the reliance of the produced models on the particular data that was used in the fitting process and to
guarantee that the models behave in the same manner when dealinsg with other datasets. In addition,
the calculation of validation metrics is performed to present non-dimensional error estimates.

After preparing the training and testing sets, a set of values were selected for the configuration
parameters of the adaptive PSO-guided WOA algorithm to train the LSTM model. The settings of
these values are presented in Tab. 4. As shown in the table, the initial parameters are chosen as follows.
The maximum number of iterations is set to 20 and the number of runs is chosen as 20 for the training
set. The initial size of the population is selected as 20. In addition, the values of Wmin and Wmax that
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represent the main parameters of the PSO algorithm are set to 0.6 and 0.9. Moreover, the values of α

and β as assigned to 0.99 and 0.1, respectively.

Table 4: The values of the configuration parameters of the adaptive PSO-guided WOA algorithm

Parameter Value

Number of iterations 50
Number of runs 20
Number of whales 20
Dimension Number of features
Inertia Wmin, Wmax [0.6, 0.9]
Acceleration constants C1, C2 [2, 2]
α for Fn 0.99
β for Fn 0.01

The parameters listed in Tab. 4 are used in the running of the optimization process of the LSTM
parameters. The progress of the training process follows the behavior depicted in Fig. 4. In this figure,
the model optimization reaches its best values near the 20th iteration. During the optimization process,
the exploration and exploitation operations vary depending on the recorded optimized values until
reaching the saturation level, then the recorded values of the optimized LSTM parameters are saved
to be used in predicting the metamaterial antenna bandwidth.

Figure 4: The updating of the groups of exploitation and exploration using AD-PSO-Guided WOA
algorithm [22]

The prediction results of the metamaterial antenna bandwidth using the proposed optimized
model are shown in Fig. 5. In this figure, the actual values of the bandwidth are shown in green color
and the predicted values are presented in red color. As shown in the figure, the predicted values are
too close to the actual values, which indicates the effectiveness of the proposed model in accurately
predicting the bandwidth of metamaterial antenna.
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Figure 5: Green color refers to actual values, and red color refers to predicted values using the proposed
model

Fig. 6 shows the heat map and quantile-quantile (QQ) plot of the prediction results. As shown
in the figure, the points of the QQ plot are distributed in a way that fits the diagonal line between
the predicted and the actual residuals. This fitting confirms the performance of the optimized LSTM
model in predicting the bandwidth of the metamaterial antenna.

Figure 6: Heat map and QQ plot of the prediction results using the proposed model

The plots depicted in Fig. 7 show the residuals and the homoscedasticity of the prediction results
using the proposed optimized LSTM model. As shown in the figure, the values of the residual
error are close to zero which confirms the effectiveness of the proposed approach. In addition, a
homoscedasticity plot is useful to show if the independent variables have the same error term, which
is confirmed from the plot values.
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Figure 7: Residual and homoscedasticity plots of the prediction results using the proposed model

Moreover, the plots of Fig. 8 show the receiver operating characteristics (ROC) of the proposed
optimized LSTM. The figure shows also the RMSE values of the proposed LSTM and the other
competing models. As shown in the figure, the area under the curve is high for the proposed model
with the minimum value of RMSE. These values emphasize the superiority of the proposed approach.

Figure 8: ROC and RMSE for the prediction results of the proposed model

Fig. 9 depicts the histogram of the RMSE values resulting from the prediction of the bandwidth
using the proposed model and the other three competing approaches. In this figure, the RMSE values
approximately follow a straight line with a few peaks, which reflects the stability of the proposed
approach in predicting the bandwidth of the metamaterial antenna.

The evaluation criteria listed in Tab. 2 are used to measure the performance of the proposed
approach along with the other competing approaches. Tab. 5 presents the evaluations of these criteria
based on the metamaterial antenna test set. As shown in the table, the results achieved by the proposed
model are RMSE of (0.003108), MAE of (0.001871), MBE of 0.000205), and R of (0.999888).
These values outperform those of the other competing approaches (MLP, KNN, and LSTM). More
evaluation criteria are presented in the table with their measured values which are also much better
than the values achieved by the other models.
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Figure 9: Histogram of the RMSE values measured from the bandwidth predictions

Table 5: Comparison of the proposed model and the other traditional models

MLP KNN LSTM Proposed model

RMSE 0.051860371 0.027929868 0.020169502 0.003108
MAE 0.045904674 0.023111993 0.015496072 0.001871
MBE −0.042390451 0.000227761 0.004493794 0.000205
R 0.991067787 0.992886219 0.995676454 0.999888
R2 0.982215359 0.985823043 0.991371601 0.999776
RRMSE 8.723646595 4.698198039 11.57581043 0.522864
NSE 0.936988554 0.981723798 0.990468998 0.999774
WI 0.873977428 0.93655041 0.957458475 0.994862

The ANOVA test, using the prediction results achieved by the proposed model, is presented in
Tab. 6. The values presented in these tables indicate the stability of the proposed approach. In addition,
Tab. 7 shows the descriptive statistics of the proposed approach over 20 runs. The calculated values
of these statistics using the proposed approach is promising when compared with the corresponding
values calculated from the results achieved by the other approaches, as shown in the table. These
values confirm the efficiency and superiority of the proposed model in predicting the bandwidth of
metamaterial antenna.

Table 6: Results of the ANOVA test for predicting the antenna bandwidth using the proposed model

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment
(between
columns)

0.0177 3 0.005901 F (3, 52) =
203.5

P < 0.0001

Residual (within
columns)

0.001508 52 0.000029

Total 0.01921 55
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Table 7: The descriptive statistics of the proposed model compared with the other models

Descriptive statistics MLP KNN LSTM Proposed
model

Number of values 14 14 14 14
Minimum 0.03186 0.02093 0.01817 0.003071
25% Percentile 0.05186 0.02793 0.02017 0.003108
Median 0.05186 0.02793 0.02017 0.003108
75% Percentile 0.05186 0.02793 0.02017 0.003108
Maximum 0.08186 0.03793 0.02817 0.003138
Range 0.05 0.017 0.01 6.72E−05
10% Percentile 0.04186 0.02443 0.01917 0.003081
90% Percentile 0.06686 0.03361 0.02417 0.003128
95% CI of median
Actual confidence level 98.71% 98.71% 98.71% 98.71%
Lower confidence limit 0.05186 0.02793 0.02017 0.003108
Upper confidence limit 0.05186 0.02793 0.02017 0.003108
Mean 0.05257 0.02824 0.02060 0.003107
Std. Deviation 0.00997 0.00339 0.00224 1.44E−05
Std. Error of Mean 0.002665 0.000906 0.0006 3.84E−06
Lower 95% CI of mean 0.04682 0.02628 0.0193 0.003099
Upper 95% CI of mean 0.05833 0.0302 0.02189 0.003116
Coefficient of variation 18.97% 12.01% 10.89% 0.4619%
Geometric mean 0.05175 0.02806 0.0205 0.003107
Geometric SD factor 1.203 1.124 1.1 1.005
Lower 95% CI of geo.
mean

0.0465 0.02622 0.0194 0.003099

Upper 95% CI of geo.
mean

0.05758 0.03003 0.02167 0.003116

Harmonic mean 0.05091 0.02788 0.02042 0.003107
Lower 95% CI of harm.
mean

0.04571 0.0261 0.01947 0.003099

Upper 95% CI of harm.
mean

0.05744 0.02993 0.02147 0.003116

Quadratic mean 0.05345 0.02843 0.02071 0.003107
Lower 95% CI of quad.
mean

0.04656 0.02627 0.01916 0.003099

Upper 95% CI of quad.
mean

0.05954 0.03044 0.02215 0.003116

Skewness 1.468 1.195 3.329 −0.6237
Kurtosis 7.539 6.955 12.21 4.044
Sum 0.736 0.3954 0.2884 0.0435
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The Wilcoxon signed-rank test is performed on the metamaterial test set and the results are
recorded in Tab. 8. As shown in the table, the proposed approach achieves the lowest discrepancy
values over the test set when compared with the other methods. This proves the stability of the proposed
approach in predicting the bandwidth of the metamaterial antenna.

Table 8: Wilcoxon signed-rank test of bandwidth prediction results using the proposed model

MLP KNN LSTM Proposed
LSTM

Theoretical mean 0 0 0 0
Actual mean 0.05257 0.02824 0.0206 0.003107
Number of values 14 14 14 14
One sample t-test
t, df t = 19.73, df = 13 t = 31.16, df = 13 t = 34.35, df = 13 t = 810.1,

df = 13
P-value (two
tailed)

<0.0001 <0.0001 <0.0001 <0.0001

P-value summary ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
Significant
(alpha = 0.05)?

Yes Yes Yes Yes

How big is the
discrepancy?
Discrepancy 0.05257 0.02824 0.0206 0.003107
SD of discrepancy 0.009972 0.003391 0.002243 0.00001435
SEM of
discrepancy

0.002665 0.000906 0.0005996 0.000003836

95% confidence
interval

0.0468:0.0583 0.0263:0.0302 0.0193:0.0219 0.00310:0.00312

R squared (partial
eta squared)

0.9677 0.9868 0.9891 1

4 Conclusion

Machine learning is considered the backbone of the ongoing research efforts which contributes
significantly to many fields of today’s technology. The choice of a machine learning model usually
affects the accuracy of the predictions of the task results. In this paper, we adopted the application
of the recently emerged optimization algorithm, which is referred to as Adaptive PSO-Guided WOA,
to search for the best parameters of the LSTM deep network. This network is then used to predict
the bandwidth of the metamaterial antenna. The choice of metamaterial antenna in this work was
due to its capability to overcome the bandwidth constraints imposed by tiny sizes of antennas. On
the other hand, the interesting features and capabilities of deep learning allow it to be widely used
in almost all fields of science. LSTM is one of the most significant types of deep networks which is
optimized using the adaptive guided whale algorithm to fit the task of predicting the bandwidth. To
emphasize the superiority of the proposed approach, other competing models were incorporated in
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the conducted experiments. The findings of this work indicate that the prediction accuracy using the
proposed approach outperforms the standard LSTM, MLP, and KNN models.
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